Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Curr Opin Neurol ; 36(3): 198-206, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2301461

ABSTRACT

PURPOSE OF THE REVIEW: Persistent infections capable of causing central nervous system (CNS) complications months or years after the initial infection represent a major public health concern. This concern is particularly relevant considering the ongoing coronavirus disease 2019 pandemic, where the long-term neurological effects are still being recognized. RECENT FINDINGS: Viral infections are a risk factor for the development of neurodegenerative diseases. In this paper, we provide an in-depth exploration of the prevalent known and suspected persistent pathogens and their epidemiological and mechanistic links to later development of CNS disease. We examine the pathogenic mechanisms involved, including direct viral damage and indirect immune dysregulation, while also addressing the challenges associated with detecting persistent pathogens. SUMMARY: Viral encephalitis has been closely associated with the later development of neurodegenerative diseases and persistent viral infections of the CNS can result in severe and debilitating symptoms. Further, persistent infections may result in the development of autoreactive lymphocytes and autoimmune mediated tissue damage. Diagnosis of persistent viral infections of the CNS remains challenging and treatment options are limited. The development of additional testing modalities as well as novel antiviral agents and vaccines against these persistent infections remains a crucial research goal.


Subject(s)
COVID-19 , Central Nervous System Diseases , Virus Diseases , Humans , Persistent Infection , COVID-19/complications , Virus Diseases/complications
2.
Curr Opin Immunol ; 80: 102269, 2023 02.
Article in English | MEDLINE | ID: covidwho-2302616
3.
PLoS One ; 18(3): e0275698, 2023.
Article in English | MEDLINE | ID: covidwho-2257706

ABSTRACT

OBJECTIVE: To examine the associations of sociodemographic, socioeconomic, and behavioral factors with depression, anxiety, and self-reported health status during the COVID-19 lockdown in Ecuador. We also assessed the differences in these associations between women and men. DESIGN, SETTING, AND PARTICIPANTS: We conducted a cross-sectional survey between July to October 2020 to adults who were living in Ecuador between March to October 2020. All data were collected through an online survey. We ran descriptive and bivariate analyses and fitted sex-stratified multivariate logistic regression models to assess the association between explanatory variables and self-reported health status. RESULTS: 1801 women and 1123 men completed the survey. Their median (IQR) age was 34 (27-44) years, most participants had a university education (84%) and a full-time public or private job (63%); 16% of participants had poor health self-perception. Poor self-perceived health was associated with being female, having solely public healthcare system access, perceiving housing conditions as inadequate, living with cohabitants requiring care, perceiving difficulties in coping with work or managing household chores, COVID-19 infection, chronic disease, and depression symptoms were significantly and independently associated with poor self-reported health status. For women, self-employment, having solely public healthcare system access, perceiving housing conditions as inadequate, having cohabitants requiring care, having very high difficulties to cope with household chores, having COVID-19, and having a chronic disease increased the likelihood of having poor self-reported health status. For men, poor or inadequate housing, presence of any chronic disease, and depression increased the likelihood of having poor self-reported health status. CONCLUSION: Being female, having solely public healthcare system access, perceiving housing conditions as inadequate, living with cohabitants requiring care, perceiving difficulties in coping with work or managing household chores, COVID-19 infection, chronic disease, and depression symptoms were significantly and independently associated with poor self-reported health status in Ecuadorian population.


Subject(s)
COVID-19 , Male , Adult , Humans , Female , COVID-19/epidemiology , Cross-Sectional Studies , Ecuador/epidemiology , Self Report , Persistent Infection , Communicable Disease Control , Health Status
4.
Sci Rep ; 13(1): 4216, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2284448

ABSTRACT

We explored the impact of chronic Strongyloides stercoralis infection on the gut microbiome and microbial activity in a longitudinal study. At baseline (time-point T0), 42 fecal samples from matched individuals (21 positive for strongyloidiasis and 21 negative) were subjected to microbiome 16S-rRNA sequencing. Those positive at T0 (untreated then because of COVID19 lockdowns) were retested one year later (T1). Persistent infection in these individuals indicated chronic strongyloidiasis: they were treated with ivermectin and retested four months later (T2). Fecal samples at T1 and T2 were subjected to 16S-rRNA sequencing and LC-MS/MS to determine microbial diversity and proteomes. No significant alteration of indices of gut microbial diversity was found in chronic strongyloidiasis. However, the Ruminococcus torques group was highly over-represented in chronic infection. Metaproteome data revealed enrichment of Ruminococcus torques mucin-degrader enzymes in infection, possibly influencing the ability of the host to expel parasites. Metaproteomics indicated an increase in carbohydrate metabolism and Bacteroidaceae accounted for this change in chronic infection. STITCH interaction networks explored highly expressed microbial proteins before treatment and short-chain fatty acids involved in the synthesis of acetate. In conclusion, our data indicate that chronic S. stercoralis infection increases Ruminococcus torques group and alters the microbial proteome.


Subject(s)
COVID-19 , Strongyloides stercoralis , Strongyloidiasis , Humans , Animals , Strongyloidiasis/parasitology , Proteome , Persistent Infection , Longitudinal Studies , Ruminococcus , Chromatography, Liquid , Communicable Disease Control , Tandem Mass Spectrometry , Feces/parasitology
5.
Eur Respir Rev ; 31(166)2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2267878

ABSTRACT

Aspergillus species are the most frequent cause of fungal infections of the lungs with a broad spectrum of clinical presentations including invasive pulmonary aspergillosis (IPA) and chronic pulmonary aspergillosis (CPA). IPA affects immunocompromised populations, which are increasing in number and diversity with the advent of novel anti-cancer therapies. Moreover, IPA has emerged as a complication of severe influenza and coronavirus disease 2019 in apparently immunocompetent hosts. CPA mainly affects patients with pre-existing lung lesions and is recognised increasingly frequently among patients with long-term survival following cure of tuberculosis or lung cancer. The diagnosis of pulmonary aspergillosis is complex as it relies on the presence of clinical, radiological and microbiological criteria, which differ according to the type of pulmonary aspergillosis (IPA or CPA) and the type of patient population. The management of pulmonary aspergillosis is complicated by the limited number of treatment options, drug interactions, adverse events and the emergence of antifungal resistance.


Subject(s)
COVID-19 , Influenza, Human , Lung Neoplasms , Pulmonary Aspergillosis , Humans , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Immunocompromised Host , Persistent Infection
6.
Microbiol Spectr ; 11(1): e0330822, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2244578

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P. aeruginosa laboratory strains, and the importance of T6SS diversity in the evolution of clinical P. aeruginosa remains unclear. Recently, we characterized a P. aeruginosa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. Bioinformatic analysis has revealed a putative type VI secretion system (T6SS) dependent lipase effector in LYSZa7, which is a homologue of TseL in Vibrio cholerae and is widely distributed in pathogens. We experimentally validated that this TseL homologue belongs to the Tle2, a subfamily of T6SS-lipase effectors; thereby, we name this effector TseL (TseLPA in this work). Further, we showed the lipase-dependent bacterial toxicity of TseLPA, which primarily targets bacterial periplasm. The toxicity of TseLPA can be neutralized by two immunity proteins, TsiP1 and TsiP2, which are encoded upstream of tseL. In addition, we proved this TseLPA contributes to bacterial pathogenesis by promoting bacterial internalization into host cells. Our study suggests that clinical bacterial strains employ a diversified group of T6SS effectors for interbacterial competition and might contribute to emerging of new epidemic clonal lineages. IMPORTANCE Pseudomonas aeruginosa is one predominant pathogen that causes hospital-acquired infections and is one of the commonest coinfecting bacteria in immunocompromised patients and chronic wounds. This bacterium harbors a diverse accessory genome with a high frequency of gene recombination, rendering its population highly heterogeneous. Numerous Pa lineages coexist in the biofilm, where successful epidemic clonal lineage or strain-specific type commonly acquires genes to increase its fitness over the other organisms. Current studies of Pa genomic diversity commonly focused on antibiotic resistant genes and novel phages, overlooking the contribution of type VI secretion system (T6SS). We characterized a Pa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. We report, in this study, a novel T6SS-lipase effector that is broadly distributed in Pa clinical isolates and other predominant pathogens. The study suggests that hospital transmission may raise the emergence of new epidemic clonal lineages with specified T6SS effectors.


Subject(s)
COVID-19 , Pseudomonas aeruginosa , Type VI Secretion Systems , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , COVID-19/complications , COVID-19/microbiology , Persistent Infection , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
7.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2241185

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is a member of the enteric microorganisms and an opportunistic pathogen. There is no report of secondary E. faecalis infection to TGEV, even though they both target to the intestinal tracts. To investigate the interactions between TGEV and E. faecalis, we set up an in vitro infection model by the swine IPEC-J2 cells. Dynamic changes of cell traits, including EMT and cell motility, were evaluated through qPCR, Western blot, electronic microscopy, scratch test, Transwell migration test and invasion test, respectively. The adhesion and invasion tests of E. faecalis were taken to verify the impact of the preceding TGEV infection. The cell morphology and molecular marker evaluation results showed that the TGEV persistent infection induced EMT on IPEC-J2 cells; increased cellular motility and invasion potential were also observed. Spontaneously, the expression levels of fibronectin (FN) and the membrane protein integrin-α5, which are dominant bacterial receptors on IPEC-J2 cells, were upgraded. It indicated that the bacteria E. faecalis adhered to IPEC-J2 cells through the FN receptor, and then invaded the cells by binding with the integrin-α5, suggesting that both molecules were critical for the adhesion and invasion of E. faecalis to IPEC-J2 cells. Additionally, it appeared that E. faecalis alone might trigger certain EMT phenomena, implying a vicious circle might occur. Generally, bacterial and viral co-infections are frustrating yet common in both human and veterinary medicines, and our observations on enteric TGEV and E. faecalis interactions, especially the diversity of bacterial invasion strategies, might provide new insights into the mechanisms of E. faecalis pathogenicity.


Subject(s)
Bacterial Infections , Transmissible gastroenteritis virus , Animals , Humans , Swine , Enterococcus faecalis , Persistent Infection , Intestines , Epithelial Cells/microbiology , Integrins
8.
Nat Immunol ; 23(1): 6-8, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612195
9.
Viruses ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2216973

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) is the most transmissible ß-coronavirus in history, affecting all population groups. Immunocompromised patients, particularly cancer patients, have been highlighted as a reservoir to promote accumulation of viral mutations throughout persistent infection. CASE PRESENTATION: We aimed to describe the clinical course and SARS-CoV-2 mutation profile for 102 days in an immunocompromised patient with non-Hodgkin's lymphoma and COVID-19. We used RT-qPCR to quantify SARS-CoV-2 viral load over time and whole-virus genome sequencing to identify viral lineage and mutation profile. The patient presented with a persistent infection through 102 days while being treated with cytotoxic chemotherapy for non-Hodgkin's lymphoma and received targeted therapy for COVID-19 with remdesivir and hyperimmune plasma. All sequenced samples belonged to the BA.1.1 lineage. We detected nine amino acid substitutions in five viral genes (Nucleocapsid, ORF1a, ORF1b, ORF13a, and ORF9b), grouped in two clusters: the first cluster with amino acid substitutions only detected on days 39 and 87 of sample collection, and the second cluster with amino acid substitutions only detected on day 95 of sample collection. The Spike gene remained unchanged in all samples. Viral load was dynamic but consistent with the disease flares. CONCLUSIONS: This report shows that the multiple mutations that occur in an immunocompromised patient with persistent COVID-19 could provide information regarding viral evolution and emergence of new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Virus Shedding , Persistent Infection , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/drug therapy , Immunocompromised Host
10.
Cell Rep Med ; 4(2): 100943, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2211656

ABSTRACT

The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Persistent Infection , Genome, Viral , Genotype
11.
Viruses ; 14(4)2022 04 03.
Article in English | MEDLINE | ID: covidwho-1776359

ABSTRACT

BACKGROUND: Prolonged shedding of SARS-CoV-2 in immunocompromised patients has been described. Furthermore, an accumulation of mutations of the SARS-CoV-2 genome in these patients has been observed. METHODS: We describe the viral evolution, immunologic response and clinical course of a patient with a lymphoma in complete remission who had received therapy with rituximab and remained SARS-CoV-2 RT-qPCR positive for 161 days. RESULTS: The patient remained hospitalised for 10 days, after which he fully recovered and remained asymptomatic. A progressive increase in Ct-value, coinciding with a progressive rise in lymphocyte count, was seen from day 137 onward. Culture of a nasopharyngeal swab on day 67 showed growth of SARS-CoV-2. Whole genome sequencing (WGS) demonstrated that the virus belonged to the wildtype SARS-CoV-2 clade 20B/GR, but rapidly accumulated a high number of mutations as well as deletions in the N-terminal domain of its spike protein. CONCLUSION: SARS-CoV-2 persistence in immunocompromised individuals has important clinical implications, but halting immunosuppressive therapy might result in a favourable clinical course. The long-term shedding of viable virus necessitates customized infection prevention measures in these individuals. The observed accelerated accumulation of mutations of the SARS-CoV-2 genome in these patients might facilitate the origin of new VOCs that might subsequently spread in the general community.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Immunocompromised Host , Male , Persistent Infection , Rituximab/therapeutic use , SARS-CoV-2/genetics
12.
J Clin Virol ; 148: 105083, 2022 03.
Article in English | MEDLINE | ID: covidwho-1654709

ABSTRACT

BACKGROUND: Transmission of hepatitis E virus (HEV) within the healthcare setting is extremely rare. Additionally, the development of chronic HEV infection in association with severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) infection and/or its immunomodulatory therapy has not been reported previously. AIMS: To describe the investigation and management of a nosocomial HEV transmission incident during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Epidemiological and molecular investigation of two individuals hospitalised with COVID-19 who were both diagnosed with HEV infection. RESULTS: Findings from our investigation were consistent with transmission of HEV from one patient with a community-acquired HEV infection to another individual (identical HEV sequences were identified in the two patients), most likely due to a breach in infection control practices whilst both patients shared a bed space on the intensive care unit (ICU). Chronic HEV infection requiring treatment with ribavirin developed in one patient with prolonged lymphopaenia attributable to COVID-19 and/or the immunomodulators received for its treatment. Further investigation did not identify transmission of HEV to any other patients or to healthcare workers. CONCLUSIONS: The extraordinary demands that the COVID-19 pandemic has placed on all aspects of healthcare, particularly within ICU settings, has greatly challenged the ability to consistently maintain optimal infection prevention and control practices. Under the significant pressures of the COVID-19 pandemic a highly unusual nosocomial HEV transmission incident occurred complicated further by progression to a chronic HEV infection in one patient.


Subject(s)
COVID-19 , Cross Infection , Hepatitis E virus , Hepatitis E , Cross Infection/epidemiology , Hepatitis E/drug therapy , Hepatitis E/epidemiology , Hepatitis E virus/genetics , Humans , Pandemics , Persistent Infection , SARS-CoV-2
13.
Internist (Berl) ; 63(1): 118-128, 2022 Jan.
Article in German | MEDLINE | ID: covidwho-1603180

ABSTRACT

Antiviral drugs inhibit viral replication by interaction with specific elements of the viral replication cycle. Directly acting antiviral agents have revolutionized the therapeutic options for chronic infections with human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). Pharmacological developments constantly improve therapeutic and prophylactic options for diseases caused by herpes viruses, which is of particular relevance for immunocompromised patients. While infections with persistent viruses, such as HIV, HBV or herpes viruses principally so far cannot be cured, complete elimination of viruses that cause acute infections is possible; however, acute infections, such as influenza or coronavirus disease 2019 (COVID-19) offer only a small therapeutic window for antiviral strategies due to their pathophysiological dynamics. The optimal time point for antiviral agents is immediately after exposure to the virus, which frequently limits its application in practice. An effective pre-exposure or postexposure prophylaxis has been established for infections with HIV and influenza A/B and also gains relevance for infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Hepacivirus , Humans , Persistent Infection , SARS-CoV-2
14.
Ann Clin Microbiol Antimicrob ; 20(1): 85, 2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1598520

ABSTRACT

BACKGROUND: There is growing evidence that antibody responses play a role in the resolution of SARS-CoV-2 infection. Patients with primary or secondary antibody deficiency are at increased risk of persistent infection. This challenging clinical scenario is associated with adverse patient outcome and potentially creates an ecological niche for the evolution of novel SARS-CoV-2 variants with immune evasion capacity. Case reports and/or series have implied a therapeutic role for convalescent plasma (CP) to secure virological clearance, although concerns have been raised about the effectiveness of CP and its potential to drive viral evolution, and it has largely been withdrawn from clinical use in the UK. CASE PRESENTATION: We report two cases in which persistent SARS-CoV-2 infection was cleared following administration of the monoclonal antibody combination casirivimab and imdevimab (REGN-COV2, Ronapreve). A 55-year-old male with follicular lymphoma, treated with B cell depleting therapy, developed SARS-CoV-2 infection in September 2020 which then persisted for over 200 days. He was hospitalised on four occasions with COVID-19 and suffered debilitating fatigue and malaise throughout. There was no clinical response to antiviral therapy with remdesivir or CP, and SARS-CoV-2 was consistently detected in nasopharyngeal swabs. Intrahost evolution of several spike variants of uncertain significance was identified by viral sequence analysis. Delivery of REGN-COV2, in combination with remdesivir, was associated with clinical improvement and viral clearance within 6 days, which was sustained for over 150 days despite immunotherapy for relapsed follicular lymphoma. The second case, a 68-year-old female with chronic lymphocytic leukaemia on ibrutinib, also developed persistent SARS-CoV-2 infection. Despite a lack of response to remdesivir, infection promptly cleared following REGN-COV2 in combination with remdesivir, accompanied by resolution of inflammation and full clinical recovery that has been maintained for over 290 days. CONCLUSIONS: These cases highlight the potential benefit of REGN-COV2 as therapy for persistent SARS-CoV-2 infection in antibody deficient individuals, including after failure of CP treatment. Formal clinical studies are warranted to assess the effectiveness of REGN-COV2 in antibody-deficient patients, especially in light of the emergence of variants of concern, such as Omicron, that appear to evade REGN-COV2 neutralisation.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Persistent Infection/virology , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , COVID-19/therapy , Drug Combinations , Female , Humans , Immunization, Passive , Lymphoma, Follicular , Male , Middle Aged , Persistent Infection/drug therapy , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
15.
Cancer Discov ; 12(1): 62-73, 2022 01.
Article in English | MEDLINE | ID: covidwho-1595223

ABSTRACT

Coronavirus disease 2019 (COVID-19) infection results in both acute mortality and persistent and/or recurrent disease in patients with hematologic malignancies, but the drivers of persistent infection in this population are unknown. We found that B-cell lymphomas were at particularly high risk for persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity. Further analysis of these patients identified discrete risk factors for initial disease severity compared with disease chronicity. Active therapy and diminished T-cell counts were drivers of acute mortality in COVID-19-infected patients with lymphoma. Conversely, B cell-depleting therapy was the primary driver of rehospitalization for COVID-19. In patients with persistent SARS-CoV-2 positivity, we observed high levels of viral entropy consistent with intrahost viral evolution, particularly in patients with impaired CD8+ T-cell immunity. These results suggest that persistent COVID-19 infection is likely to remain a risk in patients with impaired adaptive immunity and that additional therapeutic strategies are needed to enable viral clearance in this high-risk population. SIGNIFICANCE: We describe the largest cohort of persistent symptomatic COVID-19 infection in patients with lymphoid malignancies and identify B-cell depletion as the key immunologic driver of persistent infection. Furthermore, we demonstrate ongoing intrahost viral evolution in patients with persistent COVID-19 infection, particularly in patients with impaired CD8+ T-cell immunity.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
COVID-19/immunology , COVID-19/virology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/virology , Persistent Infection/immunology , Persistent Infection/virology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Female , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
16.
J Infect Dis ; 224(Suppl 6): S660-S669, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1559086

ABSTRACT

BACKGROUND: SARS-CoV-2 infection in term placenta is rare. However, growing evidence suggests that susceptibility of the human placenta to infection may vary by gestational age and pathogen. For several viral infections, susceptibility appears to be greatest during early gestation. Peri-implantation placental infections that result in pre-clinical pregnancy loss would typically go undetected. Little is known about the effects of SARS-CoV-2 on the peri-implantation human placenta since this time in pregnancy can only be modeled in vitro. METHODS: We used a human embryonic stem cell (hESC)-derived model of peri-implantation placental development to assess patterns of ACE2 and TMPRSS2 transcription and protein expression in primitive trophoblast. We then infected the same trophoblast cell model with a clinical isolate of SARS-CoV-2 and documented infection dynamics. RESULTS: ACE2 and TMPRSS2 were transcribed and translated in hESC-derived trophoblast, with preferential expression in syncytialized cells. These same cells supported replicative and persistent infection by SARS-CoV-2, while non-syncytialized trophoblast cells in the same cultures did not. CONCLUSIONS: Co-expression of ACE2 and TMPRSS2 in hESC-derived trophoblast and the robust and replicative infection limited to syncytiotrophoblast equivalents support the hypothesis that increased viral susceptibility may be a defining characteristic of primitive trophoblast.


Subject(s)
COVID-19/diagnosis , Placenta/metabolism , Pregnancy Complications, Infectious/virology , Abortion, Spontaneous/virology , Adult , Angiotensin-Converting Enzyme 2 , COVID-19/blood , Female , Humans , Persistent Infection , Pregnancy , Risk Factors , SARS-CoV-2 , Serine Endopeptidases , Trophoblasts
18.
Viruses ; 13(11)2021 10 24.
Article in English | MEDLINE | ID: covidwho-1512693

ABSTRACT

(1) Background: Equine arteritis virus (EAV) infection causes reproductive losses and systemic vasculitis in susceptible equidae. The intact male becomes the virus' reservoir upon EAV infection, as it causes a chronic-persistent infection of the accessory sex glands. Infected semen is the main source of virus transmission. (2) Here, we describe acute EAV infection and spread in a stallion population after introduction of new members to the group. (3) Conclusions: acute clinical signs, acute phase detection of antigen via (PCR) nasal swabs or (EDTA) blood, and seroconversion support the idea of transmission via seminal fluids into the respiratory tract(s) of others. This outbreak highlights EAV's horizontal transmission via the respiratory tract. This route should be considered in a chronic-persistently infected herd, when seronegative animals are added to the group.


Subject(s)
Arterivirus Infections/epidemiology , Arterivirus Infections/veterinary , Disease Outbreaks , Equartevirus , Horse Diseases/epidemiology , Animals , Arterivirus Infections/transmission , Arterivirus Infections/virology , Disease Transmission, Infectious , Horse Diseases/virology , Horses , Male , Masturbation , Persistent Infection , Respiratory System/virology , Semen/virology
19.
Front Immunol ; 12: 747143, 2021.
Article in English | MEDLINE | ID: covidwho-1497080

ABSTRACT

Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/microbiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Persistent Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL